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Goal

Two physics problems in particle radiotherapy:

• Designing beam lines

• Predicting the dose distribution in the patient

We need to understand the interactions of 

particles with matter
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Outline

• Preliminary notions and definitions

• Energy loss of heavy charged particles by atomic collisions

• The Bethe-Bloch formula (stopping power)

• Fluence, stopping power and dose

• Range
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Introduction 9

1.3.1 The Two-Body Scattering

Radiation processes, like the ones resulting in energy losses by collision, take place
in matter and can be considered (see following chapters) as two-body scatterings
in which the target particle is almost at rest. In this section, we will study the
kinematics of these processes and, in particular, derive equations regarding the
maximum energy transfer.

Let us consider an incident particle [e.g., a proton (p), pion (º), kaon (K), etc.]
of mass m and momentum ~p, and a target particle of mass me [Rossi (1964)] at
rest. For collision energy-loss processes, the target particle in matter is usually an
atomic electron (see Fig. 1.1). After the interaction, two scattered particles emerge:
the former with mass m and momentum ~p 00 and the latter with mass me and
momentum ~p 0. The latter one has the direction of motion (i.e., the direction of the
three-vector ~p 0) forming an angle µ with the incoming particle direction. µ is the
angle at which the target particle is scattered. The kinetic energy [see Eq. (1.12)] of
the scattered particle is related to its momentum by

Ek + mec
2 =

p
p02c2 + m2

ec
4, (1.22)

from which we get

p02 =
°
Ek + mec2

¢2 °m2
ec

4

c2
. (1.23)

The total energy before and after scattering is conserved. Thus, we have
p

p2c2 + m2c4 + mec
2 =

p
p002c2 + m2c4 + Ek + mec

2

and, consequently,
p

p002c2 + m2c4 =
p

p2c2 + m2c4 ° Ek, (1.24)

while from momentum conservation:

~p 00 = ~p° ~p 0 =) p002 = p2 + p02 ° 2p p0 cos µ. (1.25)

scattered�particle
with�momentum�p”

scattered�electron
with�momentum�p’

incoming�particle
with�momentum�p

θ

Fig. 1.1 Incident particle of mass m and momentum ~p emerges with momentum p00 = |~p 00|, while
the scattered electron emerges with momentum p0 = |~p 0|.

Energy and momentum are conserved:
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Kinetic energy of the scattered target particle:
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Equation (1.25) can be rewritten taking into account Eq. (1.23):

p002 = p2 +
°
Ek + mec2

¢2 °m2
ec

4

c2
° 2p cos µ

s
(Ek + mec2)2 °m2

ec
4

c2
,

which becomes, after substituting p00 obtained from Eq. (1.24) and squaring both
sides of that equation,

Ek

p
p2c2 + m2c4 = °Ekmec

2 + pc cos µ
q

(Ek + mec2)2 °m2
ec

4,

from which we get

pc cos µ

s
E2

k + 2Ekmec2

E2
k

= mec
2 +

p
p2c2 + m2c4,

and, finally, by squaring both sides of the equation we can derive the expression for
the kinetic energy Ek of the scattered target particle, i.e.,

Ek =
2mec4p2cos2 µ

≥
mec2 +

p
p2c2 + m2c4

¥2
° p2c2cos2 µ

. (1.26)

The kinetic energy Ek of the recoiling target particle is the amount of transferred
energy in the interaction. From Eq. (1.26), we note that the maximum energy
transfer Wm is for µ = 0, i.e., when a head-on collision occurs. For µ = 0, Eq. (1.26)
becomes:

Wm =
p2c2

1
2mec2 + 1

2 (m2/me) c2 +
p

p2c2 + m2c4
. (1.27)

From Eq. (1.10), the incoming particle energy Ei is given by

Ei = m∞c2 =
p

p2c2 + m2c4.

We can rewrite Eq. (1.27) as:

Wm = 2mec
2Ø2∞2

∑
1 +

≥me

m

¥2
+ 2∞

me

m

∏°1

. (1.28)

Massive particles (e.g., proton§, K, º etc.) are particles whose masses are much
larger than the electron (or positron) mass me, i.e.,

m¿ me (º 0.511MeV/c2).

For massive particles, at su±ciently high energies‡, i.e., when the incoming momen-
tum p is

p¿ m2

me
c,

§The rest mass of the proton is º 938.27 MeV/c2.
‡For instance, this condition is satisfied by an incoming º with momentum ¿ 36GeV/c or an

incoming proton with momentum ¿ 1.7 TeV/c.

Maximum energy transfer Wm is for q = 0 (head-on collision):
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For particles 𝑚 ≫ 𝑚#
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Eq. (1.27) becomes

Wm º pc º Ei.

In the extreme relativistic case, a massive particle can transfer all its energy to the
target electron in a head-on collision, i.e., a proton can be stopped by interacting
with an electron. At lower energies†, i.e., when

pø m2

me
c,

the maximum energy transfer [see Eq. (1.27)] by particles with m ¿ me is appro-
ximated by

Wm º 2mec
2
≥ p

mc

¥2

and, because p = mØ∞c, we have:

Wm º 2mec
2 Ø2

1° Ø2
= 2mec

2Ø2∞2. (1.29)

For instance, a proton of 10 GeV has a Lorentz factor ∞ º 10 and Ø º 1. Thus, its
maximum energy transfer is Wm º 100 MeV.

1.3.2 The Invariant Mass

The four-momentum of a particle with rest mass‡ m0 is defined as

q̃ =
µ

E

c
, ~p

∂
.

The scalar product between two four-momenta q̃ and q̃0 is an invariant§§ quantity
and is given by (e.g., Section 38 of [PDB (2008)])

q̃ · q̃0 =
E E0

c2
° ~p · ~p 0. (1.30)

The invariant mass of a particle is related to the scalar product of its four-
momentum by:

q̃ · q̃ = q2

=
E2

c2
° ~p · ~p

=
E2

c2
° p2

= m2
0c

2

†For instance, this condition is satisfied by an incoming º with momentum ø 36GeV/c or an
incoming proton with momentum ø 1.7 TeV/c.
‡The rest mass is the mass of a body that is isolated (free) and at rest relative to the observer.

§§The invariant mass or intrinsic mass or proper mass or just mass is the mass of an object that
is the same for all frames of reference.

(valid for 2𝛾𝑚# ≪ 𝑀)
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Fig. 2.1 The impact parameter b is the minimum distance between the incoming particle and the
target by which it is scattered.

maximum transferable energy from the incident particle to atomic electrons, ± is
the correction for the density-eÆect, and finally U is the term related to the non-
participation of electrons of inner shells (K, L, . . .) for very low incoming kinetic
energies (i.e., the shell correction term). The number of electrons per cm3 (n) of
the traversed material is given by (ZΩN)/A [Eq. (1.40)], where Ω is the material
density in g/cm3, N is the Avogadro number (see Appendix A.2), Z and A are the
atomic number (Sect. 3.1) and atomic weight (see page 14 and Sect. 1.4.1) of the
material, respectively. The atomic number Z is the number of protons inside the
nucleus of that atom.

The minus sign for dE/dx, in Eq. (2.1), indicates that the energy is lost by the
particle. For a heavy particle, the collision energy-loss, dE/dx, is also referred to as
the stopping power.

In Sect. 1.3.1, we have derived the expression of the maximum energy trans-
fer Wm for the relativistic scattering of a massive particle onto an electron at
rest. Usually, because the maximum energy transfer is much larger than the elec-
tron binding energy, this latter can be neglected. Thus, the value of Wm is given
by formula (1.28), or, in most practical cases, by its approximate expression given
in Eq. (1.29): we will make use of this latter equation in the present chapter. Once
the approximate expression of Wm is used, Eq. (2.1) (i.e., the energy-loss formula)
can be rewritten in an equivalent way as

°dE

dx
=

4ºnz2e4

mv2

∑
ln

µ
2mv2∞2

I

∂
° Ø2 ° ±

2
° U

2

∏
, (2.2)

or

°dE

dx
=

4ºnz2e4

mv2
L, (2.3)

where L is a dimensionless parameter called the stopping number, which contains
the essential physics of the process. In Eq. (2.3), L is given by the term in brackets
in Eq. (2.2). As discussed later, the stopping number can be modified by adding

The impact parameter b is the minimum distance between the incoming 
particle and the target by which it is scattered

C. Leroy & P.G. Rancoita, (2009) Radiation Interaction in Matter and Detection, World Scientific
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Energy loss of heavy charged particles by atomic collisions

Bohr’s calculation – the classical case

The incoming fast particle of charge ze is not deflected by an atomic electron 
almost at rest for small energy transfer
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Fig. 2.2 Incoming fast particle of charge ze scattered by an atomic electron almost at rest: for
small energy transfer, the particle trajectory is not deflected.

correction terms which also depend on the particle velocity v, charge number z,
atomic target number Z and excitation energy I. Equation (2.1) and its equivalent
expression given by Eq. (2.2) are also termed Bethe–Bloch formula. In literature, the
Bethe–Bloch formula may also be found without the shell correction term. In this
latter form, it describes the energy-loss of a charged massive particle like a proton
with kinetic energy larger than a few MeV (e.g., see Sect. 2.1.1.2 and Section 27.2.1
of [PDB (2008)]).

Let us discuss an approximate derivation, i.e., without entering into complex
calculations, of the energy-loss formula following closely previous approaches [Fermi
(1950); Sternheimer (1961); Fernow (1986)]. In this way, the physical meaning of
the terms appearing in the formula and their behavior as a function of incoming
velocity become more evident. We restrict ourselves to cases where only a small
fraction of the incoming kinetic energy is transferred to atomic electrons, so that
the incoming particle trajectory is not deviated.

Now, we introduce the impact parameter b describing how close the collision
is (see Fig. 2.1): b is the minimal distance of the incoming particle to the target
electron. In general, large values of b correspond to the so-called distant collisions,
conversely small values to close collisions. Both kinds of collisions are important
for determining the average energy-loss [Eq. (2.1)], the energy straggling (i.e., the
energy-loss distribution) and the most probable energy-loss.

When a particle of charge ze interacts with an electron almost at rest‡‡, we as-
sume that, to a first approximation, the electron will emerge only after the particle
passage so that we can consider the electron essentially at rest throughout the inte-
raction. This way, for symmetry reason (see Fig. 2.2), the transferred momentum
I? will be almost along the direction perpendicular to the particle trajectory. In
addition, the order of magnitude of the maximum strength of the Coulomb force act-
ing along the perpendicular direction F? is º ze2/b2. Thus, the maximum electric
‡‡An electron is almost at rest, when its velocity is much smaller than the incoming particle
velocity v.

C. Leroy & P.G. Rancoita, (2009) Radiation Interaction in Matter and Detection, World Scientific
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Bohr’s calculation – the classical case

The transferred momentum 𝐼* will be almost along the direction perpendicular 
to the particle trajectory

𝐹* ≈ 𝑧𝑒//𝑏/

𝐼* = ∫ 𝐹* 𝑑𝑡 ∼
𝑧𝑒/

𝑏𝑣

where the interaction time is ≈ 8
9

inversely proportional to the incoming particle velocity and directly proportional to b

More momentum is transferred 
to the electron, the longer the 
particle stays in its vicinity
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Bohr’s calculation – the classical case

Relationship between the impact parameter b and the transferred energy W

𝑊 ∼
𝐼*/

2𝑚
=

2𝑧/𝑒;

𝑚𝑏/𝑣/

Distant collisions are soft ones, while close collisions allow large 
transfers of kinetic energy (energy transferred to recoiling nuclei can be 
usually neglected with respect to the one from recoiling electrons – ratio 10-4)

Kinetic energy :
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Bohr’s calculation – the classical case

22 2. Passage of Radiation Through Matter 

The inelastic collisions are, of course, statistical in nature, occurring with a certain 
quantum mechanical probability. However, because their number per macroscopic 
pathlength is generally large, the fluctuations in the total energy loss are small and one 
can meaningfully work with the average energy loss per unit path length. This quantity, 
often called the stopping power or simply dEldx, was first calculated by Bohr using 
classical arguments and later by Bethe, Bloch and others using quantum mechanics. 
Bohr's calculation is, nevertheless, very instructive and we will briefly present a simpli-
fied version due to Jackson [2.1] here. 

2.2.1 Bohr's Calculation - The Classical Case 

Consider a heavy particle with a charge ze, mass M and velocity v passing through 
some material medium and suppose that there is an atomic electron at some distance b 
from the particle trajectory (see Fig. 2.2). We assume that the electron is free and 
initially at rest, and furthermore, that it only moves very slightly during the interaction 
with the heavy particle so that the electric field acting on the electron may be taken at 
its initial position. Moreover, after the collision, we assume the incident particle to be 
essentially undeviated from its original path because of its much larger mass E j ú =me)' 
This is one reason for separating electrons from heavy particles! 

e 

I ú = ú f =
," -----Z----- ill -i'b 
I .. x 
\ M.ze \! Fig. 2.2. Collision of a heavy charged particle with an atomic 
1,- ___________ ú L = electron 

Let us now try to calculate the energy gained by the electron by finding the 
momentum impulse it receives from colliding with the heavy particle. Thus 

(2,.16) 

where only the component of the electric field E1. perpendicular to the particle trajec-
tory enters because of symmetry. To calculate the integral JE1. dx, we use Gauss' Law 
over an infinitely long cylinder centered on the particle trajectory and passing through 
the position of the electron. Then 

so that 

2ze 2 
1=--

bv 

and the energy gained by the electron is 

/2 2z2e4 
L1E(b) =--= 

2 me m ev 2 b 2 

(2.17) 

(2.18) 

(2.19) 

Let n be the density of electrons,
then the energy lost to all the electrons 
located at a distance between b and 
b + db in a thickness dx is:

−𝑑𝐸 𝑏 = Δ𝐸 𝑏 𝑛 𝑑𝑉 =
4𝜋𝑛𝑧/𝑒;

𝑚𝑣/
𝑑𝑏
𝑏
𝑑𝑥

where 𝑛 𝑑𝑉 = 𝑛 2𝜋𝑏 𝑑𝑏 𝑑𝑥 are the number of electrons encountered by 
the particle along a path dx at impact parameter between b and b + db

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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Bohr’s calculation – the classical case

The overall energy loss by collisions calculated by integrating 
over the range of the impact parameter is:

−
𝑑𝐸
𝑑𝑥

= D
8EFG

8EHI 4𝜋𝑛𝑧/𝑒;

𝑚𝑣/
𝑑𝑏
𝑏
=
4𝜋𝑛𝑧/𝑒;

𝑚𝑣/
ln

𝑏LMN
𝑏LOP
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Bohr’s calculation – the classical case

Limits:

𝑏LMN ≃
𝑣𝛾
𝜐̅

where T𝜐 is the characteristic mean frequency of excitation of electrons; 
and 𝜏 ≃ V

TW
is the collision time that cannot exceed the typical time period 

associated with bound electrons. This is the principle of adiabatic invariance  
- the perturbation must not be adiabatic, otherwise no energy is transferred.
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Bohr’s calculation – the classical case

Limits:

𝑏LMN ≃
𝑣𝛾ℎ
𝐼

if we introduce the mean excitation energy 𝐼 = ℎ𝜐̅
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Bohr’s calculation – the classical case

Limits:

𝑏LOP ≃
ℎ

2𝑃#ZL

In the classical approach, the wave characteristics of particles are 
neglected and this is valid as long as the impact parameter b is larger than 
the de Broglie wavelength of the electron in the CMS of the interaction

,     where Pecm is the electron momentum in the CMS
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Bohr’s calculation – the classical case

Limits:

[ 𝑃#ZL [ ≃ 𝑚𝛾𝑣 = 𝑚𝛾𝛽𝑐 ⟹ 𝑏LOP ≃
ℎ

2𝑚𝛾𝛽𝑐
.

The electron mass is much smaller than the mass of the incoming particle 
and the CMS is approximately associated with the incoming particle. The 
electron velocity in the CMS is opposite and almost equal to the vparticle.
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Bohr’s calculation – the classical case

Substituting:

−`a
`N =

;bPcd#e

L9d ln 8EHI
8EFG

= ;bPc
d#e

L9d ln 9fg
h

/LfiZ
g

−
𝑑𝐸
𝑑𝑥

=
4𝜋𝑛𝑧/𝑒;

𝑚𝑣/
ln

2𝑚𝛾/𝑣/

𝐼

/
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Using the value of the maximum energy transfer Wm:

−
𝑑𝐸
𝑑𝑥

=
4𝜋𝑛𝑧/𝑒;

𝑚𝑣/
ln

2𝑚𝑣/𝑊L
𝐼/(1 − 𝛽/)

This is essentially Bohr's classical formula. It gives a reasonable description of the energy 
loss for heavy particles such as the a-particle or heavier nuclei. However, for lighter 
particles, e.g. the proton, the formula breaks down because of quantum effects. 
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• The Bethe-Bloch formula (stopping power)
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The Bethe-Bloch formula (Stopping Power)

Bethe relativistic formula (energy-loss formula)
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Introduction 11

Eq. (1.27) becomes

Wm º pc º Ei.

In the extreme relativistic case, a massive particle can transfer all its energy to the
target electron in a head-on collision, i.e., a proton can be stopped by interacting
with an electron. At lower energies†, i.e., when

pø m2

me
c,

the maximum energy transfer [see Eq. (1.27)] by particles with m ¿ me is appro-
ximated by

Wm º 2mec
2
≥ p

mc

¥2

and, because p = mØ∞c, we have:

Wm º 2mec
2 Ø2

1° Ø2
= 2mec

2Ø2∞2. (1.29)

For instance, a proton of 10 GeV has a Lorentz factor ∞ º 10 and Ø º 1. Thus, its
maximum energy transfer is Wm º 100 MeV.

1.3.2 The Invariant Mass

The four-momentum of a particle with rest mass‡ m0 is defined as

q̃ =
µ

E

c
, ~p

∂
.

The scalar product between two four-momenta q̃ and q̃0 is an invariant§§ quantity
and is given by (e.g., Section 38 of [PDB (2008)])

q̃ · q̃0 =
E E0

c2
° ~p · ~p 0. (1.30)

The invariant mass of a particle is related to the scalar product of its four-
momentum by:

q̃ · q̃ = q2

=
E2

c2
° ~p · ~p

=
E2

c2
° p2

= m2
0c

2

†For instance, this condition is satisfied by an incoming º with momentum ø 36GeV/c or an
incoming proton with momentum ø 1.7 TeV/c.
‡The rest mass is the mass of a body that is isolated (free) and at rest relative to the observer.

§§The invariant mass or intrinsic mass or proper mass or just mass is the mass of an object that
is the same for all frames of reference.

−
𝑑𝐸
𝑑𝑥 =

4𝜋𝑛𝑧/𝑒;

𝑚𝑣/ ln
2𝑚𝑣/

𝐼/(1 − 𝛽/) − 𝛽/

−
𝑑𝐸
𝑑𝑥

=
4𝜋𝑛𝑧/𝑒;

𝑚𝑣/
ln

2𝑚𝑣/𝑊L
𝐼/ 1 − 𝛽/

− 2𝛽/
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The Bethe-Bloch formula (Stopping Power)

Energy-loss formula (rewritten) and with corrections

−
𝑑𝐸
𝑑𝑥 =

4𝜋𝑛𝑧/𝑒;

𝑚𝑣/ ln
2𝑚𝑣/𝛾/

𝐼 − 𝛽/ −
𝛿
2 −

𝑈
2

𝛿
2
𝑈
2

Density-effect correction

Shell effect correction

The logarithmic term increases quadratically with 𝛽𝛾 = (𝑣𝛾)/𝑐
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The Bethe-Bloch formula (Stopping Power)

• Energy loss depends on ln(bmax/bmin); 1/bmin and bmax increase with bg
• 1/bmin -> enhancement of the maximum transferable kinetic energy
• bmax -> dilation of the maximum impact parameter
• With increasing particle energy, d-rays are emitted along the trajectory
• Cylindrical region surrounding the particle path is enlarged
• Emission of d-rays is responsible for the difference between the energy 

lost by the particle in the medium and the actually energy deposited.
• With increasing particle energy, the deposited energy approaches an 

almost constant value (Fermi Plateau) - depends on absorber size and density 

Features:
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The Bethe-Bloch formula (Stopping Power)

Energy-loss formula (rewritten)

;bPcd#e

L9d
= /bnLZdopdqr

sid
= 0.1535

qcdr
sid

−
𝑑𝐸
𝑑𝑥

= 0.1535
𝜌𝑧/𝑍
𝐴𝛽/

ln
2𝑚𝑣/𝑊L
𝐼/ 1 − 𝛽/

− 𝛽/ −
𝛿
2
−
𝑈
2

𝐼
𝑍 = 12 +

7
𝑍 , 𝑍 < 13

𝐼
𝑍 = 9.76 + 58.8 𝑍�V.V�, 𝑍 ≥ 13

Mean excitation energy:

classical electron radius
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Mass stopping power (radiotherapy energy 3-300 MeV)

𝑆#�
𝜌
=
1
𝜌
𝑑𝐸
𝑑𝑥

= 0.3072
𝑍
𝐴𝛽/

ln
𝑊L
𝐼

− 𝛽/
MeV
g/cm/

𝑊L = /LpZdid

V�id

𝑆
𝜌
=�

O

𝑤O
𝑆
𝜌 O

𝑤O -> fraction by weight of the ith element for mixtures

A 10 MeV proton loses about the same amount of energy in 1 g/cm2 of 
copper as in 1 g/cm2 of aluminum or iron
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Mass stopping power for 
positive muons in copper 
as a function of bg = p/Mc.

µ- illustrate the “Barkas
effect” – dependence of 
the stopping power on 
projectile charge at very 
low energies

dE/dx in the radiative 
region is not simply a 
function of b

M. Tanabashi et al. (Particle Data Group), (2018) Phys. Rev. D 98, 030001
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The Barkas effect

Barkas Formula:

Heavier ions at low energies collect
electrons from surrounding material
thus rapidly decreasing its zeff

Schwab (1991) PhD thesis, University of Giessen
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Energy dependence
• At non-relativistic energies, dE/dx is

dominated by the overall 1/b2 factor
and decreases with increasing velocity
until about v = 0.96 c, where a
minimum is reached (MIPs).

• The minimum value of dE/dx is almost
the same for all particles of the same
charge.

• As the energy increases beyond this
point, the term 1/b2 becomes almost
constant and dE/dx rises again due to
the logarithmic dependence.

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag



Page347/5/20 |

Author
Division

Physics of Charged Particle Therapy | Paulo M. Martins

The Bethe-Bloch formula (Stopping Power)
Mean energy loss rate in liquid hydrogen, gaseous 
helium, carbon, aluminum, iron, tin, and lead.

• Similar (slow decrease) rates of energy loss

• Density-effect correction for Helium – d(bg)

• Broad minima drops from bg = 3.5 to 3.0 as Z

goes from 7 to 100 

• Most relativistic particles (e.g., cosmic-ray 

muons) have mean energy loss rates close to 

the minimum (minimum ionizing particles - MIPs)

M. Tanabashi et al. (Particle Data Group), (2018) Phys. Rev. D 98, 030001
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The shell and density correction
• The density effect arises from the fact that

the electric field of the particle tends to
polarize the atoms along its path

• Electrons far from the path are shielded
form the full electric field intensity and the
collisions contribute less to the energy loss

• Depends on the velocity of the particle and
the density of the material (the higher both
variables the stronger is the effect)

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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The Bethe-Bloch formula (Stopping Power)

The shell and density correction
• The shell effect arises when the velocity of

the incident particle is comparable or
smaller than the orbital velocity of the
bound electrons.

• At such energies, the assumption that the
electron is stationary with respect to the
incident particle is no longer valid and the
Bethe-Bloch formula breaks down.

• The correction is very small!
W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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Fluence, stopping power and dose

Definitions

Fluence

25Physics of Proton Interactions in Matter

speed v or momentum p, given its kinetic energy E.* Radiotherapy protons are 
somewhat relativistic (their speed is of order c ! !300 10 16   w m/s ft/ns), so 
the relevant equations (see any textbook on special relativity) are as follows:

 
β ≡ =

+
v
c

pc
E m c2  

(2.1)

 ( ) ( ) ( ) .E mc pc mc+ = +2 2 2 2 2
 (2.2)

From these, if we first define a reduced kinetic energy,

 
τ ≡ E

mc2  
(2.3)

we can derive several useful equations whose relativistic ( )Y ≫ 1  and non-
relativistic ( )Y ≪ 1  limits are obvious at a glance:

 
β2

2

2
1

= +
+

τ
τ( )

τ
 

(2.4)

 ( ) ( )pc mc E2 22= +τ  (2.5)

 
pv E= +

+
τ
τ

2
1

.
 

(2.6)

The last quantity, pv, occurs frequently in MCS theory. For E = 160 MeV we 
find β = 0.520 (speed just over half the speed of light), pc = 571 MeV, and 
pv = 297 MeV.

2.2.2 Fluence, Stopping Power, and Dose

Suppose a beam of protons slows down and eventually stops in a water tank. 
At any given depth we may be concerned with the number of protons, their 
individual rate of energy loss, or the total rate at which they deposit energy 
in the water. Let x (cm) be displacement along the beam direction and y (cm) 
be transverse displacement.

The fluence, Φ, is a quantity which depends on position in the water tank. 
It is defined as the number of protons, during a given exposure or treatment, 
crossing an infinitesimal element of area dA normal to x.†

 
Φ ≡dN

dA
protons
cm2 .

 
(2.7)

*  In radiotherapy physics, kinetic energy is often denoted E, unlike particle physics where E 
usually stands for total (kinetic + rest) energy.

† Whether in the beam line or the patient, radiotherapy protons are always directed within 
a few degrees of the x axis. Other types of radiation require a more general definition of 
fluence.

Fluence rate

Mass stopping power

Dose

26 Proton Therapy Physics

The fluence rate is the time derivative of the fluence*:

 
!Φ ≡d

dt
Φ protons

cm s2 .
 

(2.8)

The stopping power is the rate at which a single proton loses kinetic energy:

 
S

dE
dx

≡ − MeV
cm

.
 

(2.9)

The mass stopping power is stopping power “corrected” for density:

 

S dE
dxρ ρ

≡ − 1 MeV
g/cm2

 
(2.10)

where ρ (g/cm3) is the local density of the stopping medium. For instance, 
the mass stopping powers of air and water are similar, whereas the stopping 
power of air is about a thousand times less than that of water.† The physical 
absorbed dose, D, at some point in a radiation field is the energy absorbed per 
unit target mass. In SI units,

 
D } J

kg
.
 

(2.11)

The special unit of dose used in radiation therapy is the Gray: 1 Gy ≡ 1 J/kg. 
To give a rough idea of the numbers, a course of proton radiotherapy might 
consist of ≈ 70 Gy to ≈ 1000 cm3 of target volume given in ≈ 35 fractions (2 Gy/
session). However, a single whole- body dose of 4 Gy is lethal (with a probabil-
ity of 50%) even with good medical care. To put this into perspective, assum-
ing the typical thermal power radiated by an adult weighing 80 Kg is 100 W, 
a lethal dose of ionizing radiation corresponds to the amount of thermal 
energy given off in 3 s! Ionizing radiation is nasty stuff.

An earlier, arguably more convenient unit of physical absorbed dose is the 
rad: 1 Gy = 100 rad. Older oncologists frequently hedge, saying “centiGray” 
(cGy) instead of rad.

2.2.3 Energy Lost vs. Energy Deposited

It is good to remember that the energy lost by a proton beam exceeds the 
energy absorbed locally by the patient or water phantom. A fraction of the 
beam’s energy goes into neutral secondaries (γ-rays and neutrons), which 

* Sometimes Φ⋅  is written φ. In the early literature fluence rate is called “flux.”
† The often used quantity ρ dx (g/cm2) is the areal density or simply the “grams per square 

centimeter” of an element of stopping medium of thickness, dx. It is the thickness of a slab 
of stopping material times its density. To determine it experimentally, one usually measures, 
instead, mass divided by area.
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power of air is about a thousand times less than that of water.† The physical 
absorbed dose, D, at some point in a radiation field is the energy absorbed per 
unit target mass. In SI units,

 
D } J

kg
.
 

(2.11)

The special unit of dose used in radiation therapy is the Gray: 1 Gy ≡ 1 J/kg. 
To give a rough idea of the numbers, a course of proton radiotherapy might 
consist of ≈ 70 Gy to ≈ 1000 cm3 of target volume given in ≈ 35 fractions (2 Gy/
session). However, a single whole- body dose of 4 Gy is lethal (with a probabil-
ity of 50%) even with good medical care. To put this into perspective, assum-
ing the typical thermal power radiated by an adult weighing 80 Kg is 100 W, 
a lethal dose of ionizing radiation corresponds to the amount of thermal 
energy given off in 3 s! Ionizing radiation is nasty stuff.

An earlier, arguably more convenient unit of physical absorbed dose is the 
rad: 1 Gy = 100 rad. Older oncologists frequently hedge, saying “centiGray” 
(cGy) instead of rad.

2.2.3 Energy Lost vs. Energy Deposited

It is good to remember that the energy lost by a proton beam exceeds the 
energy absorbed locally by the patient or water phantom. A fraction of the 
beam’s energy goes into neutral secondaries (γ-rays and neutrons), which 

* Sometimes Φ⋅  is written φ. In the early literature fluence rate is called “flux.”
† The often used quantity ρ dx (g/cm2) is the areal density or simply the “grams per square 

centimeter” of an element of stopping medium of thickness, dx. It is the thickness of a slab 
of stopping material times its density. To determine it experimentally, one usually measures, 
instead, mass divided by area.

(B. Gottschalk) H. Paganetti 2012
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may deposit their energy some distance away (for instance, in the shielding 
of the treatment room). Energy is conserved, of course, but only if we take 
the region of interest large enough and include the very small fraction that 
may go into changing the energy state of target molecules.

2.2.4 The Fundamental Equation

How does physical absorbed dose relate to fluence and stopping power? 
Suppose dN protons pass through an infinitesimal cylinder of cross sectional 
area dA and thickness dx . In the cylinder

 
D dE dx dx dN

dA dx
≡ energy

mass
/= − × ×

× ×
( )

ρ  

or

 
D S= Φ

ρ 
(2.12)

Dose equals fluence times mass stopping power. Proton therapy calculations, 
whether beam line design or dose reconstruction in the patient, usually 
begin with this formula in one form or another. However, it is not conve-
nient to use SI units throughout. Gray (= J/Kg) is fine, but S/ρ is invariably 
in MeV/(g/cm2), square meters is far too large an area, and one proton is far 
too few. Therefore, let Φ = 1 Gp/cm2, where Gp ≡ gigaproton ≡ 109 protons, 
and let S/ρ = 1 MeV/(g/cm2). After appropriate conversions such as 1 MeV = 
0.1602 × 10–12 J we find

 
D

S= 0 1602. GyΦ
ρ  

(2.13)

with Φ in Gp/cm2 and S/ρ in MeV/(g/cm2) as usually tabulated.
Another useful form is found by taking the time derivative of Equation 2.13, 

expressing fluence rate in terms of proton current density ( ),i A Ne A ep/ /= =! !Φ  
assuming a current density of 1 nA/cm2, and converting units. We find

 
!D

i
A
Sp=
ρ

Gy
s  

(2.14)

with ip/A in nA/cm2 and S/ρ in MeV/(g/cm2). For a current density of 
0.0033 nA/cm2 and S = 5 MeV/(g/cm2) (170 MeV protons in water), we find 
!D " "0 017 1. Gy/s Gy/min, a typical radiotherapy rate. Typical targets have 
areas of several cm2 and there are various inefficiencies involved (discussed 
next), so we have already shown that the proton current entering the treat-
ment head or “nozzle” must be of the order of nA.

In using the last few formulas, we must remember the distinction between 
absorbed dose (what we are interested in) and the tabulated stopping power 
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F in Gp/cm2

S/r in Mev/(g/cm2)

(B. Gottschalk) H. Paganetti 2012
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ip/A in nA/cm2

S/r in MeV/(g/cm2)

For a 170 MeV proton beam in water:
• current density of 0.0033 nA/cm2

• S = 5 MeV/(g/cm2)
⟹ 𝐷̇ = 0.017 Gy/min (typical radiotherapy rate)

(B. Gottschalk) H. Paganetti 2012
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• current density of 0.0033 nA/cm2

• Targets with several cm2 require proton currents
entering the treatment head in the order of nA

• The tabulated stopping power is somewhat greater
that the absorbed dose (a fraction goes into neutral
secondaries – g-rays and neutrons ranging further)

• The dose rate must never be used to estimate the
dose delivered to the patient!! (dosimeters needed!)

Dose rate and beam current

(B. Gottschalk) H. Paganetti 2012
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Call that, the fractional dwell time of the first (deepest) step, fMOD. Putting 
everything together we find, averaged over one modulator cycle,

 
〈 〉 = ⎛

⎝
⎜

⎞
⎠
⎟!D f f

i
A

Sε
ρBP MOD

p Gy
s  

(2.15)

with ip (incident proton current) in nA, A in cm2, and S/ρ in MeV/(g/cm2). 
Strictly speaking S/ρ is the mass stopping power in water at the water tank 
entrance, but you can use the incident energy because energy loss in the 
beam spreading system is small by design.

It remains to determine fMOD as a function of modulation. For zero modula-
tion, fMOD = 1. Otherwise, we need to design a set of modulators (1). Figure 2.6 
shows fMOD as a function of relative modulation for a typical beam spreading 
system. The shape of the curve comes mainly from the shape of the Bragg 
peak. It is little affected by details of the beam spreading system, so Figure 
2.6 can safely be used for rough estimates. Dependence on modulation is 
nonlinear. Therefore Eq. 2.15 implies that, whereas dose rate is strictly pro-
portional to inverse area, it is not proportional to thickness (extent in depth) 
because the deepest Bragg peak already delivers a considerable dose to the 
entire volume whatever the irradiation strategy (passive or scanning).

2.3 Stopping

Protons slow down in matter, mainly through myriad collisions with atomic 
electrons. In collisions at a given distance a proton loses more energy, the 

f M
O

D

m100 / d100
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FIGURE 2.6
Dependence on relative modulation of fMOD, the relative dwell time of the deepest step, for a 
typical set of range modulators. d100 is the depth of the distal corner of the SOBP. m100 is the 
distance between the corners.

e = efficiency (single scattering ~ 0.05; double scattering ~ 0.45)

fBP = peak-to-entrance ratio of pristine BP ~ 3.5 (energy independent)

fMOD = fractional dwell time of the deepest step (range modulation)

(B. Gottschalk) H. Paganetti 2012
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(R. Slopsema) H. Paganetti 2014
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Dose rate and beam current

• For zero modulation, fMOD =1
• The dose rate is proportional to inverse area, but not to thickness of the modulator
• The deepest BP already delivers considerable dose to the entire volume (passive or active)

(B. Gottschalk) H. Paganetti 2014
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Accelerator and beam delivery (passive scattering)

(R. Slopsema) H. Paganetti 2014
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Outline

• Preliminary notions and definitions

• Energy loss of heavy charged particles by atomic collisions

• The Bethe-Bloch formula (stopping sower)

• Fluence, stopping power and dose

• Range
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• Range depends on the type of material, particle 
type and its energy

• Range can be determined by passing a beam of 

particles at the desired energy through different 

thicknesses of the material and measure the ratio of 

transmitted to incident particles
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Range

Typical range number-distance curve 

• As the range is approached the ratio drops.
• The ratio does not drop immediately to the

background level, but slopes down due to
the non-continuous energy loss (statistical).

• Two identical particles with the same initial
energy will not in general suffer the same
number of collisions and energy loss.

• A measurement with an ensemble of
identical particles shows a statistical
distribution of ranges (range straggling),
centered about a mean value (mean range).

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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Typical range number-distance curve 

• Mean range: midpoint on the descending
slope where half of the particles are
absorbed

• Extrapolated or pratical range: the point at
which the curve drops to the background
level (tangent to the curve at the midpoint
and extrapolating to the zero-level) – all
particles are absorbed

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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Calculated range curves of different
heavy particles in aluminum

• Mean Range: 𝑆 𝑇� = ∫�
�� `a

`N

�V
𝑑𝐸

• Approximate pathlength travelled and ignores MCS
• The strait-line range is smaller than the total zigzag
• MCS effect is small for heavy charged particles

• Semi-empirical formula:
• 𝑅 𝑇� = 𝑅� 𝑇LOP + ∫�EFG

�� `a
`N

�V
𝑑𝐸

• Tmin = minimum energy at which dE/dx is valid
• 𝑅 𝑇� = empirically determined constant

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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Calculated range curves of different 
heavy particles in aluminum

• Linear on the log-log scale

• 𝑅 ∝ 𝐸8

• The stopping power is dominated by the b-2 term,
• -dE/dx −d𝐸/𝑑𝑥 ∝ 𝛽�/ ∝ 𝑇�V

• Integrating: 𝑅 ∝ 𝑇/

• A more accurate fit: 𝑅 ∝ 𝑇V.��

W.R. Leo, (1994) Techniques for Nuclear and 
Particle Physics Experiments, Springer-Verlag
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Range
Practical example: A beam of 600 MeV protons can be "lowered" in energy by passing it
through a block of material such as copper and then "cleaned" using a series of analyzing
magnets. What thickness of copper would be required to lower the average energy of this
beam to 400 MeV?

Δ𝑥 = −D
���

;�� 𝑑𝐸
𝑑𝑥

�V
𝑑𝐸

34 2. Passage of Radiation Through Matter 

where we have assumed that the density of plastic scintillator is about 1.03 g/cm 3 (see 
Table 7.1 for example). 

Thus one should expect to see a peak in the signal pulse height spectrum coming 
from the counter, since muons of energy greater than about 300 MeV will deposit about 
the same amount of energy in the counter. This implies also that cosmic ray muons 
might also be used for calibration purposes. 

Example 2.2 A beam of 600 MeV protons can be "lowered" in energy by passing it 
through a block of material such as copper and then "cleaned" using a series of analyz-
ing magnets. What thickness of copper would be required to lower the average energy 
of this beam to 400 MeV? 

To find the thickness for a given energy change, we must invert dEldx and integrate 
over energy. Thus, 

( )
-1 

500 dE 
L1x= - J - dE . 

600 dx 

In general, this must be integrated numerically. If we use a simple rectangular integra-
tion with energy intervals of 20 MeV and dEl dx evaluated in the middle of each inter-
val, we find a thickness of 

Range (MeV) 

600 - 580 
580- 560 
560- 540 
540- 520 
520- 500 
500-480 
480-460 
460-440 
440-420 
420-400 

1 dE 

p dx 

1.768 
1.791 
1.815 
1.841 
1.870 
1.901 
1.934 
1.971 
2.012 
2.056 

( )
-1 

1 dE 
L1x = L1E -�

p dx 

11.31 
11.17 
11.02 
10.86 
10.69 
10.52 
10.34 
10.15 
9.94 
9.73 

L1Xtotal = 105.73 g/cm 2 = 11.88 cm 

Had we made an even simpler one step calculation taking the dEldx at 500 MeV and 
solving for L1x, we would have found L1x = 106.1 g/cm 2 = 11.92 cm, which, in fact, is 
not very different! 

Note that we are dealing with mean energy losses here. The energy of the protons 
leaving the other side of the copper degrader will, in fact, be distributed in energy as 
a Gaussian with 400 MeV as the mean (see Sect. 2.6). To produce a monoenergetic beam 
of 400 MeV protons now would require selecting out the 400 MeV protons in the peak 
of the distribution. This can be done using a magnetic field to "bend" the outgoing par-
ticles and keeping only those deflected at the correct angle. 

Simple rectangular integration
with energy intervals of 20 MeV
and dEldx evaluated in the
middle of each interval

W.R. Leo, (1994) Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag
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Bragg-Kleeman rule

For the same particle in 
different materials:

𝑅V
𝑅/

=
𝜌/
𝜌V

𝐴V
𝐴/

Range of heavy charged particles in 
liquid (bubble chamber) hydrogen, 
helium gas, carbon, iron, and lead. 

M. Tanabashi et al. (Particle Data Group), (2018) Phys. Rev. D 98, 030001
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• Proton range–energy relation 
around the clinical regime for 
four useful materials.

• At a given energy, the range
expressed in g/cm2 is greater
(the stopping power is lower)
for heavy materials.

(B. Gottschalk) H. Paganetti 2014
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(B. Gottschalk) H. Paganetti 2012

• Range–energy relation in Be, Cu, and Pb and a 
test of cubic spline interpolation. 

• Log-log graph for three materials over an 
extended region.

• Lines eventually curve. From 3-300 MeV 
(relevant energies) they are nearly straight, 
and for Be, Cu, and Pb, nearly parallel.

• Good candidates for cubic spline interpolation. 
• Only thirteen input values for each material at 

0.1, 0.2, 0.5, 1, ..., 500, 1000 MeV are required. 


